Changing views in plant UV-research From damage to protection to source of information

Pedro J. Aphalo

Department of Biosciences, University of Helsinki

OMI ten years of observations seminar at FMI 2 September 2014

Outline

- Background
- 2 Biology
- 3 Sensory UV ecology
 - Plants as problem-solvers
 - Why sensory ecology?
 - Examples of hypotheses
- 4 Conclusions

Our experiments in the field

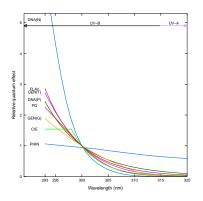
- Important: our own data on the responses of plants plus simulated spectral data from FMI allow improved understanding
- Most important: confrontation of different viewpoints and development of new ideas
- Why does it work: open minded attitude on both sides and willingness to look at the big picture of 'how things hang together'
- Joint publications: 11 refereed journal articles and a handbook on UV research methods
- 5 Future plans: several and diverse

- Important: our own data on the responses of plants plus simulated spectral data from FMI allow improved understanding
- 2 Most important: confrontation of different viewpoints and development of new ideas
- Why does it work: open minded attitude on both sides and willingness to look at the big picture of 'how things hang together'
- Joint publications: 11 refereed journal articles and a handbook on UV research methods
- 5 Future plans: several and diverse

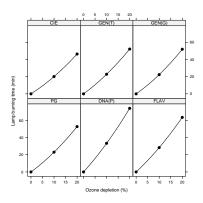
- Important: our own data on the responses of plants plus simulated spectral data from FMI allow improved understanding
- 2 Most important: confrontation of different viewpoints and development of new ideas
- 3 Why does it work: open minded attitude on both sides and willingness to look at the big picture of 'how things hang together'
- Joint publications: 11 refereed journal articles and a handbook on UV research methods
- 5 Future plans: several and diverse

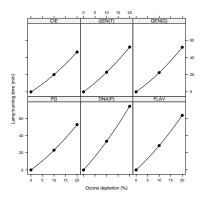
- Important: our own data on the responses of plants plus simulated spectral data from FMI allow improved understanding
- Most important: confrontation of different viewpoints and development of new ideas
- 3 Why does it work: open minded attitude on both sides and willingness to look at the big picture of 'how things hang together'
- Joint publications: 11 refereed journal articles and a handbook on UV research methods
- 5 Future plans: several and diverse

- Important: our own data on the responses of plants plus simulated spectral data from FMI allow improved understanding
- 2 Most important: confrontation of different viewpoints and development of new ideas
- 3 Why does it work: open minded attitude on both sides and willingness to look at the big picture of 'how things hang together'
- Joint publications: 11 refereed journal articles and a handbook on UV research methods
- 5 Future plans: several and diverse



System: outdoors UVB enhancement with lamps


- Question: errors due to use of a 'wrong' biological spectral weighting function (BSWF)
- Answer: in some protocols not so much (shown) but much more in other cases
- Note: similar calculations were repeated for different localities and dates


- System: outdoors UVB enhancement with lamps
- Question: errors due to use of a 'wrong' biological spectral weighting function (BSWF)
- Answer: in some protocols not so much (shown) but much more in other cases
- Note: similar calculations were repeated for different localities and dates

- System: outdoors UVB enhancement with lamps
- Question: errors due to use of a 'wrong' biological spectral weighting function (BSWF)
- Answer: in some protocols not so much (shown) but much more in other cases
- Note: similar calculations were repeated for different localities and dates

- System: outdoors UVB enhancement with lamps
- Question: errors due to use of a 'wrong' biological spectral weighting function (BSWF)
- Answer: in some protocols not so much (shown) but much more in other cases
- Note: similar calculations were repeated for different localities and dates

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- ... ⇒ use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- ... ⇒ use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important
- Responses in the lab and field are frequently different...
- ... ⇒ use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- \blacksquare ... \Rightarrow use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- \blacksquare ... \Rightarrow use of mutants and molecular methods in the field...
- $\blacksquare \ldots \Rightarrow$ need for UV spectral irradiance data will increase.

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- \blacksquare ... \Rightarrow fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- ... ⇒ use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase

- Awareness: UV radiation plays important ecological roles...
- ... ⇒ UV climatology is needed for biological research
- Awareness: some reversible responses to UV radiation are fast (even hours or less)...
- ... ⇒ fine temporal resolution is important.
- Responses in the lab and field are frequently different...
- ... ⇒ use of mutants and molecular methods in the field...
- ... ⇒ need for UV spectral irradiance data will increase.

- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just *quesses*

- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just guesses

- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just guesses

- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just guesses

- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just guesses

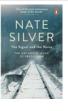
- Pending task: Bridging the gap between molecular and ecological understanding
- We mostly know how UV perception and physiological responses work
- We do not really know why plants have acquired during evolution UV photoreceptors
- How questions have been mostly deciphered in the lab
- Why questions need to be studied in the field and through modelling
- Much of what we think we know about why questions on UV and plants are just guesses

Recent controversial concepts in plant biology

Recent controversial concepts in plant biology

- Plant communication → Mostly accepted
- Plant behaviour → Mild controversy
- Plant intelligence → Strong controversy
- Plant neurobiology → Rejected

Recent controversial concepts in plant biology

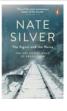

- Plant communication → Mostly accepted
- Plant behaviour → Mild controversy
- Plant intelligence → Strong controversy
- Plant neurobiology → Rejected

Recent controversial concepts in plant biology

- Plant communication → Mostly accepted
- Plant behaviour → Mild controversy
- Plant intelligence → Strong controversy
- Plant neurobiology → Rejected

Recent controversial concepts in plant biology

- Plant communication → Mostly accepted
- Plant behaviour → Mild controversy
- Plant intelligence → Strong controversy
- Plant neurobiology → Rejected



Recent controversial concepts in plant biology

- Plant communication → Mostly accepted
- Plant behaviour → Mild controversy
- Plant intelligence → Strong controversy
- Plant neurobiology → Rejected

- Organisms including plants solve problems to be able to survive and reproduce
- Organisms use information from their environment to predict future events
- 3 Organisms need to adjust timing, function and structure based on possible future *events* to minimize *risk of death...*
- 4 ... and to best profit from 'favourable times
- Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

- Organisms including plants *solve problems* to be able to survive and reproduce
- 2 Organisms use information from their environment to predict future events
- Organisms need to adjust timing, function and structure based on possible future events to minimize risk of death...
- 4 ... and to best profit from 'favourable times
- Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

- Organisms including plants *solve problems* to be able to survive and reproduce
- Organisms use information from their environment to predict future events
- 3 Organisms need to adjust timing, function and structure based on possible future events to minimize risk of death...
- 4 ... and to best profit from 'favourable times'
- Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

- Organisms including plants *solve problems* to be able to survive and reproduce
- Organisms use information from their environment to predict future events
- 3 Organisms need to adjust timing, function and structure based on possible future events to minimize risk of death...
- 4 ... and to best profit from 'favourable times'
- Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

- Organisms including plants solve problems to be able to survive and reproduce
- Organisms use information from their environment to predict future events
- 3 Organisms need to adjust timing, function and structure based on possible future *events* to minimize *risk of death...*
- 4 ... and to best profit from 'favourable times'
- 5 Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

What is the essence behind this war of words

Information and organisms

- Organisms including plants solve problems to be able to survive and reproduce
- Organisms use information from their environment to predict future events
- 3 Organisms need to adjust timing, function and structure based on possible future *events* to minimize *risk of death...*
- 4 ... and to best profit from 'favourable times'
- 5 Organisms have memory, in other words, store and integrate information in time
- Organisms exchange information 'messages' sometimes for mutual benefit, sometimes for deception

- 11 We know that plants can perceive UV radiation
- If we accept that plants use UV spectral irradiance as a source of information...
- ...we need to find out what information UV radiation carries...
- and then do experiments to test if the response of the plant supports that this information is being really used

- We know that plants can perceive UV radiation
- 2 If we accept that plants use UV spectral irradiance as a source of information...
- ...we need to find out what information UV radiation carries...
- ... and then do experiments to test if the response of the plant supports that this information is being really used

- We know that plants can perceive UV radiation
- If we accept that plants use UV spectral irradiance as a source of information...
- 3 ... we need to find out what information UV radiation carries...
- ... and then do experiments to test if the response of the plant supports that this information is being really used

- We know that plants can perceive UV radiation
- If we accept that plants use UV spectral irradiance as a source of information...
- ... we need to find out what information UV radiation carries...
- 4 ... and then do experiments to test if the response of the plant supports that this information is being really used

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- Less developed for plants
- 4 Why?
- ... plants' behaviour is not easy for humans to observe (slow...)
- intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of organisms as problem solvers makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- B Less developed for plants
- 4 Why?
- ...plants' behaviour is not easy for humans to observe (slow...)
- intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of *organisms as problem solvers* makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- 3 Less developed for plants
- 4 Why?
- ...plants' behaviour is not easy for humans to observe (slow...)
- intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of *organisms as problem solvers* makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- 3 Less developed for plants
- 4 Why?
- ...plants' behaviour is not easy for humans to observe (slow...)
- intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of organisms as problem solvers makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- 3 Less developed for plants
- 4 Why?
- 5 ... plants' behaviour is not easy for humans to observe (slow...)
- intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of *organisms as problem solvers* makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- 3 Less developed for plants
- 4 Why?
- ...plants' behaviour is not easy for humans to observe (slow...)
- 6 ...intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of organisms as problem solvers makes a lot of sense for any organism...

- Focus on the acquisition and use of information by organisms
- Well developed discipline for animals
- Less developed for plants
- 4 Why?
- 5 ... plants' behaviour is not easy for humans to observe (slow...)
- 6 ... intellectually we find the idea of brainless organisms solving problems and assessing risks alien
- In abstract terms of flow, exchange, storage and use of information the concept of organisms as problem solvers makes a lot of sense for any organism...

- Information sources are crucial to the performance and survival of organims...

- Mot yet demonstrated (but very likely)...
- ... both VIS and UV radiation are important sources of information for plants

- Information sources are crucial to the performance and survival of organims...
- 2 ...⇒ cross-correlations among variables and their lags, and autocorrelations, are key sources of information
- ... ⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- Mot yet demonstrated (but very likely)...
- ... both VIS and UV radiation are important sources of information for plants

- Information sources are crucial to the performance and survival of organims...
- 2 ...⇒ cross-correlations among variables and their lags, and autocorrelations, are key sources of information
- 3 ... ⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- Mot yet demonstrated (but very likely)...
- ... both VIS and UV radiation are important sources of information for plants

- Information sources are crucial to the performance and survival of organims...
- 2 ...⇒ cross-correlations among variables and their lags, and autocorrelations, are key sources of information
- ... ⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- 4 Not yet demonstrated (but very likely)...
- ... both VIS and UV radiation are important sources of information for plants

- Information sources are crucial to the performance and survival of organims...
- 2 ... ⇒ cross-correlations among variables and their lags, and autocorrelations, are key sources of information
- ... ⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- 4 Not yet demonstrated (but very likely). . .
- 5 ... both VIS and UV radiation are important sources of information for plants

Phenolics as sunscreens

Old but challenged

- Old: epidermal phenolics are sunscreens
- Not so old: phenolics are antioxidants
- 3 New: optical negative feedback role in UV perception
- 4 Which one is true? Probably all of them to some extent...
- $: ... \Rightarrow why$ -questions are difficult to answer

Phenolics as sunscreens

Old but challenged

- 11 Old: epidermal phenolics are sunscreens
- 2 Not so old: phenolics are antioxidants
- New: optical negative feedback role in UV perception
- 4 Which one is true? Probably all of them to some extent...
- $: ... \Rightarrow why$ -questions are difficult to answer

Phenolics as sunscreens

Old but challenged

- Old: epidermal phenolics are sunscreens
- 2 Not so old: phenolics are antioxidants
- 3 New: optical negative feedback role in UV perception
- 4 Which one is true? Probably all of them to some extent...
- $\dots \Rightarrow why$ -questions are difficult to answer

Phenolics as sunscreens Old but challenged

- Old: epidermal phenolics are sunscreens
- 2 Not so old: phenolics are antioxidants
- 3 New: optical negative feedback role in UV perception
- 4 Which one is true? Probably all of them to some extent...
- $\dots \Rightarrow why$ -questions are difficult to answer

Phenolics as sunscreens Old but challenged

- Old: epidermal phenolics are sunscreens
- 2 Not so old: phenolics are antioxidants
- 3 New: optical negative feedback role in UV perception
- 4 Which one is true? Probably all of them to some extent...
- $5 \ldots \Rightarrow why$ -questions are difficult to answer

- High UV irradiance triggers enhanced drought tolerance. . .
- Question: is it theoretically possible to forecast future soil drying from UV exposure?
- 3 Test: study long time series of environmental data
- 4 Question: do plants use this information?
- Test: are physiological responses to UV radiation partly coincident with those to drought?

- High UV irradiance triggers enhanced drought tolerance...
- Question: is it theoretically possible to forecast future soil drying from UV exposure?
- Test: study long time series of environmental data
- Question: do plants use this information?
- Test: are physiological responses to UV radiation partly coincident with those to drought?

- High UV irradiance triggers enhanced drought tolerance...
- Question: is it theoretically possible to forecast future soil drying from UV exposure?
- 3 Test: study long time series of environmental data
- Question: do plants use this information?
- Test: are physiological responses to UV radiation partly coincident with those to drought?

- High UV irradiance triggers enhanced drought tolerance...
- Question: is it theoretically possible to forecast future soil drying from UV exposure?
- Test: study long time series of environmental data
- Question: do plants use this information?
- Test: are physiological responses to UV radiation partly coincident with those to drought?

- High UV irradiance triggers enhanced drought tolerance...
- Question: is it theoretically possible to forecast future soil drying from UV exposure?
- Test: study long time series of environmental data
- Question: do plants use this information?
- Test: are physiological responses to UV radiation partly coincident with those to drought?

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 . . . ⇒ more efficient use of sun flecks for photosynthesis
- 4 . . . ⇒ low UV triggers shade tolerance
- What is the difference in the information carried by these two signals?
- ... (wild hypothesis) timing, whole-day shade versus midday shade

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 ... ⇒ more efficient use of sun flecks for photosynthesis
- 4 . . . ⇒ low UV triggers shade tolerance
- What is the difference in the information carried by these two signals?
- (wild hypothesis) timing, whole-day shade versus midday shade

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 . . . ⇒ more efficient use of sun flecks for photosynthesis
- 4 . . . ⇒ low UV triggers shade tolerance
- What is the difference in the information carried by these two signals?
- [5] ...(wild hypothesis) timing, whole-day shade versus midday shade

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- 2 New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 . . . ⇒ more efficient use of sun flecks for photosynthesis
- 4 ... ⇒ low UV triggers shade tolerance
- What is the difference in the information carried by these two signals?
- ... (wild hypothesis) timing, whole-day shade versus midday shade

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- 2 New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 . . . ⇒ more efficient use of sun flecks for photosynthesis
- 4 ... ⇒ low UV triggers shade tolerance
- 5 What is the difference in the information carried by these two signals?
- (wild hypothesis) timing, whole-day shade versus midday shade

- Old and demonstrated: low red:far-red ratio triggers shade-avoidance
- 2 New: low UVB irradiance triggers faster control of gas-exchange by stomata...
- 3 ... ⇒ more efficient use of sun flecks for photosynthesis
- 4 ... ⇒ low UV triggers shade tolerance
- What is the difference in the information carried by these two signals?
- (wild hypothesis) timing, whole-day shade versus midday shade

Hypothesis old and new

New: UVB photoreceptor in sunlight

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- ...and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- 6 Question: how does this depend on solar elevation?
- 7 ...

Hypothesis old and new

New: UVB photoreceptor in sunlight

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- ...and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- 6 Question: how does this depend on solar elevation?
- 7 ...

Hypothesis old and new

New: UVB photoreceptor in sunlight

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- 3 ... and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- Question: how does this depend on solar elevation?
- 7

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- 3 ... and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- Question: how does this depend on solar elevation?
- 7 ...

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- 3 ... and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- Question: how does this depend on solar elevation?
- 7 ...

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- 3 ... and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- 6 Question: how does this depend on solar elevation?

- UVR8 has peak absorption near 280 nm...
- 2 ... but also a long tail into the UVA
- 3 ... and solar spectral irradiance has a very steep opposite slope
- Question: what region of the solar spectrum is most effective for excitation of UVR8?
- Answer (tentative): probably at the boundary between UVB and UVA, possibly even the UVA region
- 6 Question: how does this depend on solar elevation?
- 7

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ...alteration of joint statistical properties becomes a key aspect of global change research
- Question: does the signal to noise ratio change?...
- ∴.. ⇒ signal quality changes
 (becomes harder/easier to retrieve the information)
- Question: does the relationship between the state of the signal and the 'forecasted event' change?...
- 6 . . . ⇒ the information changes (the 'meaning' of the signal changes)

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ... alteration of joint statistical properties becomes a key aspect of global change research
- Question: does the signal to noise ratio change?...
- ∴..⇒ signal quality changes (becomes harder/easier to retrieve the information)
- Question: does the relationship between the state of the signal and the 'forecasted event' change?...
- 6 ... ⇒ the information changes (the 'meaning' of the signal changes)

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ... alteration of joint statistical properties becomes a key aspect of global change research
- 3 Question: does the signal to noise ratio change?...
- Question: does the relationship between the state of the signal and the 'forecasted event' change?...
- (the 'meaning' of the signal changes)

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ... alteration of joint statistical properties becomes a key aspect of global change research
- 3 Question: does the signal to noise ratio change?...
- 4 ... ⇒ signal quality changes (becomes harder/easier to retrieve the information)
- Question: does the relationship between the state of the signal and the 'forecasted event' change?...
- 6 . . . ⇒ the information changes (the 'meaning' of the signal changes)

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ... alteration of joint statistical properties becomes a key aspect of global change research
- 3 Question: does the signal to noise ratio change?...
- 4 ...⇒ signal quality changes (becomes harder/easier to retrieve the information)
- Solution: Question: does the relationship between the state of the signal and the 'forecasted event' change?...
- 6 ... ⇒ the information changes (the 'meaning' of the signal changes)

- If plants and other organisms are highly dependent on environmental correlations for their success...
- 2 ... alteration of joint statistical properties becomes a key aspect of global change research
- 3 Question: does the signal to noise ratio change?...
- 4 ... ⇒ signal quality changes (becomes harder/easier to retrieve the information)
- Solution: does the relationship between the state of the signal and the 'forecasted event' change?...
- 6 ... ⇒ the information changes (the 'meaning' of the signal changes)

- Very few biologists have the capability (equipment and knowhow) for acquiring on-site quality-assured UV data for their experiments
- Biological studies of UV responses strongly depend on availability of good UV climatology data
- Time series of UV-irradiance that can be matched in time and space with time series of other meteorological variables are extremely useful
- Spectral data, measured and simulated, is more valuable than summaries of effective radiation based on any single BSWF

- Very few biologists have the capability (equipment and knowhow) for acquiring on-site quality-assured UV data for their experiments
- Biological studies of UV responses strongly depend on availability of good UV climatology data
- Time series of UV-irradiance that can be matched in time and space with time series of other meteorological variables are extremely useful
- Spectral data, measured and simulated, is more valuable than summaries of effective radiation based on any single BSWF

- Very few biologists have the capability (equipment and knowhow) for acquiring on-site quality-assured UV data for their experiments
- Biological studies of UV responses strongly depend on availability of good UV climatology data
- Time series of UV-irradiance that can be matched in time and space with time series of other meteorological variables are extremely useful
- Spectral data, measured and simulated, is more valuable than summaries of effective radiation based on any single BSWF

- Very few biologists have the capability (equipment and knowhow) for acquiring on-site quality-assured UV data for their experiments
- Biological studies of UV responses strongly depend on availability of good UV climatology data
- Time series of UV-irradiance that can be matched in time and space with time series of other meteorological variables are extremely useful
- Spectral data, measured and simulated, is more valuable than summaries of effective radiation based on any single BSWF

Thanks for listening!

Contact and acknowledgements

For additional information on our research, please have a look at our web site at

http://www.helsinki.fi/bioscience/senpep/.

I can be contacted at mailto:pedro.aphalo@helsinki.fi

We acknowledge the support of the Academy of Finland (decision 252548).

©2014. Text and illustrations are copyrighted by Pedro J. Aphalo, and others. All rights reserved, with the exception that making unmodified copies for private non-commercial use is allowed.