

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

The First Decade of OMI Observations

Pepijn Veefkind Pieternel Levelt & the KNMI OMI team

The Antropocene

- Ozone Layer
- Air Quality
- Climate

OMI Science Questions

- Is the ozone layer recovering as expected ?
- What are the sources of aerosols and trace gases that affect global air quality and how are they transported?
- What are the roles of tropospheric ozone and aerosols in climate change?
- What are the causes of surface UV-B change?

Atmospheric Composition

Ozone Monitoring Instrument

Ozone Monitoring Instrument

Instrument Spectral Range Spectral Resolution Spectral Sampling Spatial Resolution Swath Width Mass Size Power Data rate Spacecraft Launch Date Orbit Altitude Agencies PI Institutes

Imaging spectrometer 270 - 500 nm 0.45 - 0.63 nm 0.15 - 0.30 nm 13x24 km² (nadir) 2600 km 65 kg 50 cm × 40 cm × 35 cm 66 W 0.8 Mbps (average) NASA EOS-Aura 15 July 2004 Sun synchronous, 13:30 hr 705 km NSO, FMI KNMI, FMI

OMI is the Dutch-Finnish contribution to the NASA EOS-Aura Mission and is developed by an international consortium led by Dutch Space and TNO.

Measurement Principle

Instrument Design

Spectral range, resolution and sampling distances

Channel	Total Range	Full Performance Range	Average Spectral Resolution (FWHM)	Average Spectral Sampling Distance
UV-1	264 - 311 nm	270 - 310 nm	0.63 nm	0.33 nm/pixel
UV-2	307 - 383 nm	310 - 365 nm	0.42 nm	0.14 nm/pixel
VIS	349 - 504 nm	365 - 504 nm	0.63 nm	0.21 nm/pixel

OMI Stability

- OMI has never been switched off
- Near-perfect temperature control:
 - Detector trend 0.05 K/decade
 - Optical bench +1.2 K/decade
 - Electronics +1 K/decade
- Bad pixels ~7% after 10 years
- Radiance port optical degradation -0.5 1.0%

OMI Data products

Product	Application		
Ozone column	Ozone layer monitoring / NWP / UV index		
Ozone profile	Ozone layer monitoring / Tropospheric ozone		
Surface UV	UV index		
NO ₂	Air quality / Emission monitoring		
SO ₂	Volcanic eruptions / Air quality / Emission monitoring		
Formaldehyde	Air quality / Emission monitoring		
BrO	Air quality		
OCIO	Ozone layer monitoring		
Aerosol	Absorbing aerosol plumes / Volcanic ash		
Cloud	Cloud fraction and height variability		
Surface reflectivity	Climatology		
Solar irradiance	Solar variability		

Arctic Ozone Loss

OMINO₂ average amounts 2012 percentages indicate observed change since 2005

Credits: R.J. van der A, R. Sluiter, M. van Weele (KNMI)

Trend in SO₂ over India

Lu, Zifeng, David G. Streets, Benjamin de Foy, and Nickolay A. Krotkov, Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-Fired Power Plants during 2005–2012, Environmental Science and Technology, 2013 ://pubs.acs.org/doi/abs/10.1021/es4039648

Copernicus Atmosphere: Air Quality product chain

- The TROPOspheric Monitoring Instrument (**TROPOMI**) is the payload of the S-5P mission and is jointly developed by The Netherlands and ESA.
- The planned launch date for S-5P is 2016 with a 7 year design lifetime.

ROPOMI

- UV-VIS-NIR-SWIR nadir view grating spectrometer.
- Spectral range: 270-500, 675-775, 2305-2385 nm
- Spectral Resolution: 0.25-1.1 nm
- Spatial Resolution: 7x7km²
- Global daily coverage at 13:30 local solar time.

CONTRIBUTION TO GMES

- Total column
 O₃, NO₂, CO, SO₂, CH₄, CH₂O, H₂O, BrO
- Tropospheric column O₃, NO₂
- O₃ profile
- Aerosol absorbing index, type, optical depth

From OMI to TROPOMI

- 6x higher spatial resolution 7x7 km² vs. 13x24 km²
- 1-5x higher signal-to-noise
- Variable binning scheme

- better cloud information
 from the oxygen A+B bands
- CO and CH₄ observations from the SWIR band
- Data rate ~20x OMI

